The aging algorithm is a descendant of the NFU algorithm, with modifications to make it aware of the time span of use. Instead of just incrementing the counters of pages referenced, putting equal emphasis on page references regardless of the time, the reference counter on a page is first shifted right (divided by 2), before adding the referenced bit to the left of that binary number. For instance, if a page has referenced bits 1,0,0,1,1,0 in the past 6 clock ticks, its referenced counter will look like this: 10000000, 01000000, 00100000, 10010000, 11001000, 01100100. Page references closer to the present time have more impact than page references long ago. This ensures that pages referenced more recently, though less frequently referenced, will have higher priority over pages more frequently referenced in the past. Thus, when a page needs to be swapped out, the page with the lowest counter will be chosen.
Note that aging differs from LRU in the sense that aging can only keep track of the references in the latest 16/32 (depending on the bit size of the processor's integers) time intervals. Consequently, two pages may have referenced counters of 00000000, even though one page was referenced 9 intervals ago and the other 1000 intervals ago. Generally speaking, knowing the usage within the past 16 intervals is sufficient for making a good decision as to which page to swap out. Thus, aging can offer near-optimal performance for a moderate price.
Note that aging differs from LRU in the sense that aging can only keep track of the references in the latest 16/32 (depending on the bit size of the processor's integers) time intervals. Consequently, two pages may have referenced counters of 00000000, even though one page was referenced 9 intervals ago and the other 1000 intervals ago. Generally speaking, knowing the usage within the past 16 intervals is sufficient for making a good decision as to which page to swap out. Thus, aging can offer near-optimal performance for a moderate price.
No comments:
Post a Comment